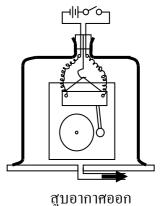
บทที่ 12


เสียง

ธรรมชาติของเสียง

เสียงเกิดจากการสั่นของวัตถุ วัตถุที่มีการสั่นแล้วทำให้เกิดเสียงเรียกว่า แหล่งกำเนิดเสียง สำหรับ มนุษย์เสียงพูดเกิดจากการสั่นสะเทือนของสายเสียงซึ่งอยู่ภายในกล่องเสียงบริเวณด้านหน้าของลำคอ เรียกว่าลูกกระเดือก มนุษย์สามารถควบคุมเสียงที่พูดพูดขึ้น โดยใช้ฟัน ถิ้น ริมฝีปาก ทำให้เกิดเสียงที่ แตกต่างกัน แต่เสียงจะมีประโยชน์อย่างสมบูรณ์ต้องมีการได้ยิน

เมื่อเสียงเกิดจากสั่นสะเทือนของวัตถุ แสดงว่าวัตถุได้รับ พลังงาน พลังงานนี้ก็จะถูกถ่ายโอนผ่านอากาศมายังหูผู้ฟัง ถ้าไม่มี อากาศเป็นตัวกลางในการถ่ายโอนพลังงาน เราจะไม่ได้ยินเสียงเลย

เราสามารถทดสอบความจริงนี้ได้ โดยการทดลองใช้กระดิ่ง ไฟฟ้าที่ส่งเสียงตลอดเวลาใส่ไว้ในครอบแก้ว แล้วค่อยๆสูบอากาศออก เราจะได้ยินเสียงกระดิ่งไฟฟ้าค่อยลงๆ จนในที่สุดจะไม่ได้ยินเสียง กระดิ่งไฟฟ้าในครอบแก้วอีกเลย เมื่อภายในครอบแก้วเป็นสุญญากาศ

จากสถานะการณ์ข้างต้น สรุปได้ว่า การเคลื่อนที่ของเสียง **ต้อง** อาศัยตัวกลางในการถ่ายโอนพลังงานการสั่นไปยังที่ต่างๆ

จะเห็นได้ว่า เสียงที่เราได้ยินนี้ เป็นพลังงานรูปหนึ่งและถือว่าเป็นคลื่นประเภทหนึ่งด้วย และ พิจารณาจากอากาศที่เป็นตัวกลางนั้นการถ่ายโอนพลังงานเสียง อนุภาคของตัวกลางคืออากาศจะมีการสั่น ในลักษณะอัดขยายสลับกันไป จึงถือได้ว่า **เสียงเป็นคลื่นตามยาว**

อัตราเร็วของเสียง

ช่วงเวลาที่เสียงเคลื่อนที่จากแหล่งกำเนิดเสียงผ่านอากาศมาถึงหูผู้ฟัง ขึ้นกับระยะทาง ระหว่าง ต้นกำเนิดเสียงกับผู้รับฟัง ถ้าระยะห่างมาก เสียงต้องใช้ช่วงเวลานานกว่าจะได้ยินเสียง แต่ถ้าระยะใกล้ เสียงใช้ช่วงเวลาสั้นกว่า

เมื่อนักฟิสิกส์ศึกษาอัตราเร็วของเสียงในอากาศ เขาได้พบว่าอัตราเร็วของเสียงในอากาศมี ความสัมพันธ์กับอุณหภูมิของอากาศโดยประมาณ ตามสมการ

$$v_t = 331 + 0.6 t$$

เมื่อ \mathbf{v}_{t} เป็นอัตราเร็วของเสียงในอากาศที่อุณหภูมิ t ใดๆ และมีหน่วยเป็นเมตรต่อวินาที t เป็นอุณหภูมิของอากาศ มีหน่วยเป็นองศาเซลเซียส

ตัวอย่าง จงหาอัตราเร็วของเสียงในอากาศที่อุณหภูมิ 25 องศาเซลเซียส และ 30 องศาเซลเซียส วิ**ธีทำ** จากสมการ $\mathbf{v}_{_{\mathrm{I}}} = 331 + 0.6\,\mathrm{t}$

$$v_{25}$$
 = 331 + (0.6 x 25) m/s
= 346 m/s
 v_{30} = 331 + (0.6 x 30) m/s
= 349 m/s

ตอบ อัตราเร็วของเสียงในอากาศที่อุณหภูมิ 25 และ 30 องศาเซลเซียส เท่ากับ 346 และ 349 เมตรต่อ วินาที ตามลำดับ

การเคลื่อนที่ของเสียงในตัวกลางหนึ่งๆ จะคงตัว เมื่ออุณหภูมิของตัวกลางคงตัว ดังในตาราง

ตาราง อัตราเร็วของเสียงในตัวกลางต่างๆที่อุณหภูมิ 25 องศาเซลเซียส

ตัวกลาง	อัตราเร็ว(เมตร/วินาที)		
แก๊สคาร์บอนไดออกไซต์ (0°C)	258		
อากาศ	346		
แก๊สไฮโครเจน	1,339		
น้ำ	1,498		
น้ำทะเล	1,531		
แก้ว	4,540		
อะลูมิเนียม	5,000		
เหล็ก	5,200		

คุณสมบัติของเสียง

เสียงเป็นคลื่นชนิดหนึ่งที่เคลื่อนที่โดยอาศัยตัวกลาง ดังนั้นจึงมีคุณสมบัติเหมือนคลื่น คือ

- 1. การสะท้อน
- 2. การหักเห
- 3. การแทรกสอด
- 4. การเลี้ยวเบน


การสะท้อนของเสียง

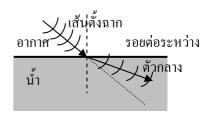
เนื่องจากเสียงเป็นพลังงานชนิดหนึ่ง เมื่อคลื่นเสียงเคลื่อนที่ไปกระทบสิ่งกีดขวาง จะทำให้เกิด การสะท้อนของเสียง และปัจจัยที่มีผลต่อการสะท้อนของเสียง ได้แก่

- 1. ลักษณะพื้นผิวที่กลื่นเสียงไปกระทบ (ผิวเรียบและแข็ง สะท้อนได้ดี ส่วนผิวอ่อนนุ่มเนื้อ พรน จะดุดซับเสียงได้ดี
- 2. มุมตกกระทบกับระนาบสะท้อนเสียง (เสียงจะสะท้อน ได้ดี เมื่อ มุมของเสียงสะท้อนเท่ากับ มุมของเสียงตกกระทบ)

มนุษย์และสัตว์ ได้อาศัยประโยชน์จากการสะท้อนของเสียง หลายอย่างเช่น การเดินเรือ การ

ประมง หาความถึกของท้องทะเล หาระดับของเรือคำน้ำ หาฝูงปลา โดยการส่งคลื่นอัลตราโซนิกออกไป แล้วรอรับฟังคลื่นที่สะท้อน จาก เครื่องรับ การส่งคลื่นชนิดนี้เรียกว่า โซนาร์ (Sonar – Sound Navigation and Ranging) ค้างคาว เป็นสัตว์สายตาไม่ดี ใช้หลักการ สะท้อนเสียง โดยส่งและรับความถี่สูง อุตสาหกรรมใช้ในการ

ตรวจสอบรอยร้าว ทางการแพทย์ใช้ตรวจสอบเนื้อเยื่อของอวัยวะต่างๆ ใช้ในการสลายนิ่วในไต ใช้ ทำลายเชื้อโรคบางชนิดในอาหาร และน้ำ


เราทราบว่าเสียงเป็นคลื่นชนิดหนึ่ง ดังนั้น ถ้าเราทราบความถี่ f ของเสียง และความยาวคลื่น เสียง λ ที่ผ่านตัวกลาง เราจะสามารถหาอัตราเร็วของคลื่นเสียงในตัวกลางนั้นได้จากความสัมพันธ์ ต่อไปนี้ $v=f\lambda$

ตัวอย่าง กำหนดให้เสียงมีอัตราเร็ว 1500 เมตรต่อวินาทีในน้ำทะเล เรือลำหนึ่งปล่อยคลื่นโซนาร์ ขนาดความถี่ 4.5 กิโลเฮริตซ์ ลงไปจากผิวน้ำ จะตรวจสอบพบปลาขนาดเล็กที่สุดได้เท่าไร

วิธีทำ จาก v = f
$$\lambda$$

$$\lambda = \frac{\mathrm{v}}{\mathrm{f}} = \frac{1500 \mathrm{\ m/s}}{4500 \mathrm{\ Hz}} = 0.33 \mathrm{\ เมตร}$$

ตอบ ปลาตัวเล็กที่สุดที่จะตรวจสอบได้ต้องยาว 0.33 เมตร การหักเหของเสียง

กลื่นเสียงเมื่อเดินทางผ่านตัวกลางที่มีความหนาแน่นแตกต่าง กันจะเกิดการเปลี่ยนแปลงทิศทางความเร็วและความยาวคลื่น แต่ ความถี่คลื่นยังคงที่กล่าวคือเมื่อเสียงเคลื่อนที่จากตัวกลางที่มีความ หนาแน่นน้อย(อากาศ) เข้าสู่ตัวกลางที่มีความหนาแน่นมากกว่า(น้ำ)

เสียงจะหักเหออกจากเส้นตั้งฉาก หลักการนี้ใช้อธิบาย การเห็นฟ้าแลบ แต่ไม่ได้ยินเสียงฟ้าร้อง เพราะเมื่อ เกิดฟ้าแลบ แม้จะมีเสียงเกิดขึ้นแต่เราไม่ได้ยินเสียง ทั้งนี้เพราะอากาศใกล้พื้นดินมีอุณหภูมิสูงกว่าอากาศ เบื้องบน ทำให้การเคลื่อนที่ของเสียงเคลื่อนที่ได้ในอัตราที่ต่างกัน คือ เคลื่อนที่ในอากาศที่มี อุณหภูมิสูง ได้เร็วกว่าในอากาศที่มีอุณหภูมิต่ำ ดังนั้น เสียงจึงเคลื่อนที่เบนขึ้นทีละน้อยๆ จนข้ามหัวเราไป จึงทำให้ ไม่ได้ยินเสียงฟ้าร้อง

ในการคำนวณเกี่ยวกับการหักเหของเสียง ยังคงใช้กฎการหักเหของสเนลล์ คือ

$$\frac{\sin\theta_1}{\sin\theta_2} \qquad = \qquad \frac{v_1}{v_2} \quad = \qquad \frac{\lambda_1}{\lambda_2} \quad = \qquad \sqrt{\frac{T_1}{T_2}}$$

ตัวอย่าง เสียงเคลื่อนที่ในอากาศจากบริเวณที่มีอุณหภูมิ 5 องศาเซลเซียส ไปยังบริเวณที่มี อุณหภูมิ 25 องศาเซลเซียส โดยมีมุมตกกระทบ 30 องศา ถ้าอากาศในบริเวณทั้งสองมีความคันเท่ากัน จง หามุมหักเหของเสียง

วิธีทำ จากสมการ
$$v_1 = 331 + 0.6 \, \mathrm{t}$$
 $v_5 = 331 + (0.6 \, \mathrm{x} \, 5) = 334 \, \mathrm{m/s}$ $v_{25} = 331 + (0.6 \, \mathrm{x} \, 25) = 346 \, \mathrm{m/s}$ $\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2}$ $\frac{\sin 30^\circ}{\sin \theta_2} = \frac{334}{346}$ $\sin \theta_2 = \frac{1}{2} \, \mathrm{x} \, \frac{346}{334} = 0.517$ $\sin 31^\circ = 0.515$ $\theta_2 \approx 31^\circ$

มุมหักเหของเสียงมีค่าประมาณ 31 องศา

ตัวอย่าง ถ้าความยาวของคลื่นเสียงบริเวณอากาศร้อนเป็น $\frac{3}{2}$ เท่าของความยาวคลื่นเสียงบริเวณ อากาศเย็น จงหามุมหักเห เมื่อเสียงเดินทางจากอากาศร้อนไปยังอากาศเย็น โดยมีมุมตกกระทบ 27 องศา

ີ່ ຈີ່ກໍ້າ ຈາກ
$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{\lambda_1}{\lambda_2}$$

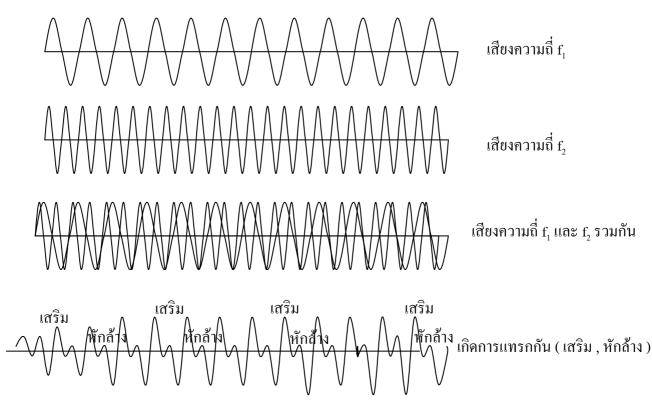
$$\frac{\sin 27^\circ}{\sin\theta_2} = \frac{\frac{3}{2}\lambda}{\lambda}$$

$$\sin\theta_2 = 0.454 \times \frac{2\lambda}{3\lambda} = 0.302$$

$$\sin 17.5^\circ = 0.301$$

$$\theta_2 \approx 17.5^\circ$$

มุมหักเหของเสียงมีค่าประมาณ 17.5 องศา


ตัวอย่าง คลื่นเสียงในอากาศหนึ่ง วิ่งจากบริเวณที่มีอุณหภูมิ T_1 เข้าสู่บริเวณที่มีอุณหภูมิต่ำกว่า คือ T_2 โดยมีมุมตกกระทบเท่ากับ θ_1 และมุมหักเหเท่ากับ θ_2 จงหาอัตราส่วนระหว่าง $\sin\theta_1$ กับ $\sin\theta_2$ กำหนดให้ $T_1=2T_2$ เคลวิน

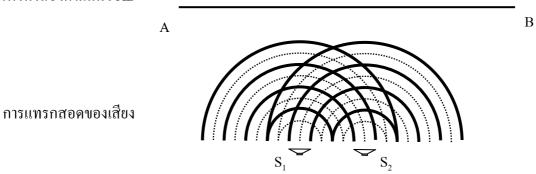
วิธีทำ จาก
$$\frac{\sin\theta_1}{\sin\theta_2} = \sqrt{\frac{T_1}{T_2}}$$

$$\frac{\sin\theta_1}{\sin\theta_2} = \sqrt{\frac{2T_2}{T_2}}$$

$$\frac{\sin\theta_1}{\sin\theta_2} = \sqrt{2}$$

$$\frac{\sin\theta_1}{\sin\theta_2} = 1.4141$$

 \therefore อัตราส่วนระหว่าง $\sin \theta_1$ กับ $\sin \theta_2$ มีค่าเท่ากับ 1.4141


การแทรกสอดของเสียง

การแทรกสอดของเสียงเป็นปรากฏการณ์ที่เกิดจากคลื่นเสียงที่มาจากแหล่งกำเนิดเสียงตั้งแต่ 2 แหล่งขึ้น ไปรวมกัน จึงเกิดการแทรกสอดแบบเสริมกันและหักล้างกัน ทำให้เกิดเสียงดัง และ เสียงค่อย

ในกรณีที่เป็นเสียงเสริมกัน ตำแหน่งที่มีการเสริมกันจะมีเสียงคั้ง ส่วนตำแหน่งที่แทรกสอดแล้ว หักล้างกันจะมีเสียงค่อย แต่การเกิดปรากฏการณ์แทรกสอดเกิดจากแหล่งกำเนิดเสียงที่มีความถี่ต่างกัน ทำ ให้เกิดเสียงคัง เสียงค่อยเป็นจังหวะๆ เรียกว่า บีตส์ (Beats) ประโยชน์จากการแทรกสอดและบีตส์นี้ นำมาใช้เทียบเครื่องดนตรี โดยมีเครื่องเทียบเสียงมาตรฐาน ใช้หลักว่าเมื่อความถี่เสียงเท่ากันจะ ไม่เกิด บีตส์ ถ้ายังมีบีตส์อยู่แสดงว่า ความถี่เสียงยัง ไม่เท่ากัน ต้องปรับจนเสียงทั้งสองมีความถี่เท่ากันจึง ไม่ทำให้ เกิดบีสต์

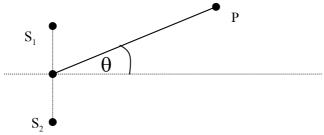
ถ้าเราตั้งลำโพงลักษณะเหมือนๆกัน 2 ตัว ให้ห่างกันระยะหนึ่ง ดังรูป แล้วเดินในแนวขนานกับ ลำโพงทั้งสองตามแนว AB

จากการเดินในแนว AB ดังกล่าว เราจะรู้สึกได้ว่า เสียงที่เราได้รับจะมีลักษณะดัง-ค่อย สลับกัน ไป

ในการคำนวณเกี่ยวกับการแทรกสอดของคลื่นเสียง ในกรณีที่เป็นแหล่งกำเนิด อาพันธ์ เฟส ตรงกัน จะได้ดังนี้

ในกรณีที่ S_1 และ S_2 เป็นแหล่งกำเนิดอาพันธ์ ทุกจุดบนเส้นปฏิบัพ เสียงจะแทรกสอด แบบเสริม เสียงจะดัง และผลต่างระหว่าระยะทางจากแหล่งกำเนิดคลื่นทั้งสองไปยังจุดใดๆบนเส้นปฏิบัพจะเท่ากับจำนวนเต็มของความยาวคลื่นเสมอ ดังรูป

ในกรณีที่ S_1 และ S_2 เป็นแหล่งกำเนิดอาพันธ์ ทุกจุดบนเส้นบัพ เสียงจะแทรกสอดแบบหักล้าง เสียงจะก่อย และผลต่างระหว่าระยะทางจากแหล่งกำเนิดคลื่นทั้งสองไปยังจุดใดๆบนเส้นบัพจะเท่ากับ จำนวนเต็มคลื่นลบกับครึ่งหนึ่งของความยาวคลื่นเสมอ ดังรูป


$$S_2P - S_1P = (n - \frac{1}{2})\lambda$$
 เมื่อ $n = 1, 2, 3, ...$ n คือ แนวเส้นบัพ

ตัวอย่าง S_1 และ S_2 เป็นลำโพงเสียงสองตัววางห่างกัน 4 เมตร ในที่โล่ง P เป็นตำแหน่งที่ผู้ฟังห่าง จาก S_1 7 เมตร และห่างจาก S_2 5.5 เมตร ถ้าผู้ฟังอยู่ตรงตำแหน่งที่เสียงหักล้างกันครั้งแรก เขาจะได้ยิน เสียงที่มีความถี่เท่าใด เมื่ออัตราเร็วของเสียงในอากาศขณะนั้นเป็น 330 เมตรต่อวินาที

$$3 \, {
m h \, m}$$
 $3 \, {
m ln}$ $S_2 P - S_1 P = (n - {1 \over 2}) \, \lambda$ $7 \, {
m m}$ $5.5 \, {
m m}$ $7 \, {
m m} - 5.5 \, {
m m} = (n - {1 \over 2}) \, \lambda$ $\lambda = 3 \, {
m m}$ $S_2 \, 4 \, {
m m}$ $S_1 \, {
m ln}$ $\gamma = 10 \, {
m ln}$ $\gamma = 1$

ตอบ เขาจะได้ยินเสียงที่มีความถี่เท่ากับ 110 เฮิรตซ์

ในกรณีที่ตำแหน่งผู้ฟัง อยู่ห่างจากแหล่งกำเนิด S_1 และ S_2 โดยไม่ทราบระยะห่างจาก แหล่งกำเนิดทั้งสอง แต่ทราบมุม θ จากแนวกลาง ระหว่างตำแหน่งทั้งสอง จะได้สมการปฏิบัพและบัพ ดังนี้

$$d \sin \theta = n \lambda$$
 ปฏิบัพ $d \sin \theta = (n - \frac{1}{2}) \lambda$ บัพ

ตัวอย่าง S_1 และ S_2 เป็นแหล่งกำเนิดเสียงอาพันธ์ ให้เสียงที่มีความถี่ 140 เฮิรตซ์ และอยู่ห่างกัน 7 เมตร จงหาว่าบนเส้นตรงเชื่อมระหว่างแหล่งกำเนิดเสียงทั้งสองมีตำแหน่งบัพเกิดขึ้นกี่ตำแหน่ง ถ้า กำหนดให้อัตราเร็วเสียงในอากาศขณะนั้นเป็น 350 เมตรต่อวินาที

วิธีทำ จาก
$$d \sin \theta = (n - \frac{1}{2}) \lambda$$

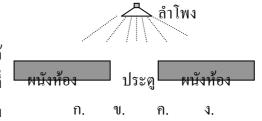
$$(7) \sin 90^{\circ} = (n - \frac{1}{2}) \frac{v}{f}$$

$$(7)(1) = (n - \frac{1}{2})(\frac{350}{140})$$

$$n = (7)(\frac{140}{350}) + \frac{1}{2}$$

$$= 3.3$$

$$= 3$$


.. บนเส้นตรงเชื่อมระหว่างแหล่งกำเนิดเสียงทั้งสองมีตำแหน่งบัพเกิดขึ้น = 3 + 3 ตำแหน่ง ตอบ บนเส้นตรงเชื่อมระหว่างแหล่งกำเนิดเสียงทั้งสองมีตำแหน่งบัพเกิดขึ้น = 6 ตำแหน่ง การเลี้ยวเบนของเสียง

นอกจากการหักเหของเสียงที่เกิดขึ้น เมื่อผ่านตัวกลางต่างชนิดกันแล้วยังมีการเลี้ยวเบนได้ การ เลี้ยวเบนของเสียงมักจะเกิดพร้อมกับการสะท้อนของเสียง เสียงที่เลี้ยวเบน จะได้ยินค่อยกว่าเดิม เพราะ พลังงานของเสียงลดลง

ในชีวิตประจำวันที่เราพบได้อย่างเสมออย่างหนึ่งคือการได้ยินเสียงของผู้อื่นได้โดยไม่เห็นตัวผู้ พูด เช่น ผู้พูดอยู่คนละด้านของมุมตึก ปรากฏการณ์ดังนี้ แสดงว่าเสียงสามารถเลี้ยวเบนได้ การอธิบาย ปรากฏการณ์นี้สามารถจะกระทำได้โดยใช้หลักการของฮอยเกนท์อธิบายว่า ทุกๆจุดบนหน้าคลื่นสามารถ ทำหน้าที่เป็นต้นกำเนิดคลื่นอันใหม่ได้ ดังนั้นอนุภาคของอากาสที่ทำหน้าที่ส่งผ่านคลื่นเสียงตรงมุมตึก

ย่อมเกิดการสั่น ทำหน้าที่เหมือนต้นกำเนิดเสียงใหม่ ส่งคลื่นเสียไปยังผู้ฟังได้

เราสามารถทดลอง การเลี้ยวเบนของเสียงได้ โดย ให้ผู้ฟัง ฟังเสียงลำโพงจากนอกห้องดังรูปที่ ตำแหน่ง ก. ข. ค. ง. ผู้ฟังย่อมได้ยินเสียง ลำโพง ที่อยู่ในห้องได้ทุกคน แสดงว่าเสียงสามารถ เลี้ยวเบนได้ตามแบบของคลื่น

การเลี้ยวเบนของเสียงจะเกิดได้ดี เมื่อช่องกว้างที่ให้เสียงผ่านมีขนาดเท่ากับความยาวคลื่นของ เสียงนั้น เนื่องจาก ช่องกว้างนั้นจะทำหน้าที่เหมือนเป็นแหล่งกำเนิดเสียงขนาดนั้นได้พอดีนั่นเอง ตัวอย่าง ช่องหน้าต่างกว้าง 0.60 เมตร สูง 1.20 เมตร ในวันที่อากาศมีอุณหภูมิ 20 องศาเซลเซียส ความถี่ของเสียงที่มากที่สุด ที่จะทำให้เกิดการเลี้ยวเบนในแนวราบมากที่สุดเป็นกี่เฮริตซ์ วิธีทำ การเลี้ยวเบนของเสียงจะเกิดได้ดีที่สุด เมื่อ ช่วงกว้างเท่ากับความยาวคลื่นของเสียง

คังนั้น
$$\lambda$$
 = 0.60 เมตร v = 331 + 0.6 t v = 331 + (0.6)(20) = 342 เมตรต่อวินาที v = v = v = v = v = v = 570 เฮิรตซ์

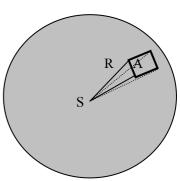
ความเข้มของเสียงและการได้ยิน

เสียงเกิดจากการสั่นของวัตถุที่เป็นแหล่งกำเนิดเสียงและในการทำให้วัตถุสั่นจำต้องใช้พลังงาน ถ้าพลังงานที่ใช้มีค่ามากแอมพลิจูดของการสั่นก็มีค่ามาก และถ้าใช้พลังงานน้อย แอมพลิจูดของการสั่นก็ จะน้อยตามไปด้วย พลังงานการสั่นของต้นกำเนิดเสียงจะถูกถ่ายโอนให้แก่โมเลกุลของอากาศที่อยู่รอบ ๆ แหล่งกำเนิดเสียงซึ่งพลังงานจะถูกถ่ายโอนผ่านโมเลกุลของอากาศต่อกันไปถึงหูผู้ฟัง ทำให้แก้วหู สั่นสะเทือน เป็นผลให้ผู้ฟังได้ยินเสียง การได้ยินเสียงของผู้ฟัง ขึ้นกับปัจจัยหลายประการ ซึ่งจะศึกษา ต่อไป

ความเข้มของเสียง

แหล่งกำเนิดที่มีช่วงกว้างของการสั่น (amplitude) กว้างมาก จะเกิดเสียงดังกว่าเสียงที่มี amplitude น้อย ในทางวิทยาศาสตร์ เรียกความดังของเสียงว่า ความเข้มของเสียง การวัดความเข้มของ เสียงวัดได้จากพลังงานของเสียงที่ตกตั้งฉากบน 1 หน่วยพื้นที่ใน 1 หน่วยเวลา มีหน่วยเป็นวัตต์ต่อตาราง เมตร (Watt/m²) และหาได้จากสมการดังต่อไปนี้

เมื่อ I คือ ความเข้มของเสียงที่จุดใดจุดหนึ่ง (Watt/m²)


P คือ กำลังของเสียงจากแหล่งกำเนิด (Watt)

R คือ ระยะระหว่างแหล่งกำเนิดเสียงกับจุดที่พิจารณา (m)

A คือ พื้นที่ของเสียงที่ตกตั้งฉากกับแหล่งกำเนิด

S คือ จุดกำเนิดกลื่นเสียงที่มีหน้าคลื่นเป็นรูปทรงกลม

 \therefore พื้นที่ ๆ เสียงตกตั้งฉากกี่คือ พื้นที่ผิวทรงกลม ซึ่งมีพื้นที่ = $4\pi R^2$

$$I = \frac{W}{tA} = \frac{P}{A} = \frac{P}{4\pi R^2}$$

$$\therefore$$
 I $\alpha \frac{1}{R^2}$

ความเข้มเสียงสูงสุดที่มนุษย์ได้ยิน (เสียงคัง) 1 watt / m^2 ความเข้มเสียงต่ำสุดที่มนุษย์ได้ยิน (เสียงเบา) 10^{-12} watt/ m^2

ตัวอย่าง ชายคนหนึ่งขณะอยู่ห่างจากแหล่งกำเนิด 3 เมตร จะได้ยินเสียงมีความเข้ม 10^{-8} watt / m^2 แหล่งกำเนิดเสียงมีกำลังเสียงกี่วัตต์

วิธีทำ จาก
$$I = \frac{P}{4\pi R^2}$$
 \Rightarrow $P = 4\pi R^2(I)$

แทนค่า
$$P=4\pi(3)^2(10^{-8})=36x10^{-8}\pi$$
 วัตต์ ตอบ แหล่งกำเนิดเสียงมีกำลังเสียงเท่ากับ $36x10^{-8}\pi$ วัตต์

เมื่อหูไม่สามารถใช้เป็นมาตรฐานในการวัคความเข้มของเสียงได้ จึงมีการวัดความเข้มของเสียง ดัง สมการและตัวอย่างข้างตน

ระดับความเข้มของเสียง

เมื่อหาอัตราส่วนระหว่างความเข้มเสียงที่ดังที่สุดที่มนุษย์ทนฟังได้กับความเข้มเสียงเบาที่สุดที่ มนุษย์ได้ยินมีค่ามากถึง 10¹² ดังนั้นเพื่อความสะควกในทางปฏิบัติ จึงนิยมใช้ ระดับความเข้มเสียงเป็น ปริมาณที่บอกความดังของเสียงแทน ความเข้มเสียง และเป็นเกียรติแก่ อเลกซานเดอร์ เกรแฮม เบล ระดับความเข้มของเสียงและมีหน่วยเรียกว่า เบล แต่เนื่องจากเบลเป็นหน่วยที่ใหญ่เกินไป ไม่สามารถ บอกความละเอียดที่จะบอกค่าความดังของเสียงต่าง ๆ ได้ จึงแบ่งเป็นหน่วยย่อยลงไป เรียกว่า เดซิเบล (dB)

มนุษย์สามารถได้ยินเสียงที่มีความดังที่ระดับความเข้มของเสียงตั้งแต่ 0 – 120 เดซิเบล เสียงที่ดัง มากเกินไปอาจทำให้หูหนวกได้ เช่น เสียงฟ้าผ่าใกล้ๆตัว ที่มีค่าความดังเกิน 120 dB เป็นต้น เสียงที่มี ความดังไม่มากแต่ได้ยินเป็นเวลานานหลายชั่วโมงก็อาจเป็นอันตรายได้ เช่น เสียงเครื่องจักรในโรงงาน อุตสาหกรรม (มลภาวะทางเสียง) องค์การอนามัยโลกจึงกำหนดว่าเสียงที่ปลอดภัยต้องมีความเข้มไม่ เกิน 85 dB เมื่อต้องได้ยินติดต่อกันวันละ 8 ชั่วโมงขึ้นไป เสียงที่ดังไม่ถึงขั้นเป็นอันตรายกับหู แต่อาจมี ผลกระทบทางด้านจิตใจได้ เช่น ทำให้เกิดความเครียด ไม่มีสมาธิ เป็นต้น

เราสามารถหาระดับความเข้มของเสียง ได้ดังนี้

เมื่อ
$$eta$$
 คือ ระดับความเข้มของเสียงที่จุดพิจารณา (dB ,เคซิเบล)

I คือ ความเข้มของเสียงขณะใดขณะหนึ่งที่จุดพิจารณา (watt/m²)

 \mathbf{I}_0 คือ ความเข้มของเสียงต่ำสุดที่มนุษย์ได้ยิน = $10^{-12}\,\mathrm{watt/m}^2$

$$\beta$$
 = $10 \log \frac{I}{I_0}$

ตัวอย่าง หน้าต่างแห่งหนึ่ง มีกลื่นเสียงผ่านวัดระดับความเข้มของเสียงได้ 80 dB จงหาว่า ขณะนั้นมี ความเข้มของเสียงกี่วัตต์ต่อตารางเมตร

วิธีทำ จาก
$$\beta$$
 = $10\log\frac{I}{I_0}$ แทนค่า 80 = $10\log\frac{I}{10^{-12}}$ = $10(\log I - \log 10^{-12})$

$$80 = 10 (\log I - (-12)\log 10)$$

$$\frac{80}{10} = \log I + 12$$

$$8 - 12 = \log I$$

$$-4 = \log I$$

$$10^{-4} = I$$

$$I = 10^{-4} \text{ watt/m}^2$$

ตอบ กลื่นเสียงขณะที่ผ่านหน้าต่างมีความเข้มของเสียงเท่ากับ 10^{-4} วัตต์ต่อตารางเมตร

ตาราง แสดงระดับความเข้มเสียงจากแหล่งกำเนิดต่าง ๆ

แหล่งกำเนิด	ระดับความเข้มเสียง	ผลการรับฟัง	
เเนตงแหล	(เดซิเบล , dB)		
การหายใจปกติ	10	แทบจะไม่ได้ยิน	
การกระซิบแผ่วเบา	30	เงียบมาก	
สำนักงานที่เงียบ	50	เงียบ	
การพูดคุยธรรมดา	60	ปานกลาง	
เครื่องดูดฝุ่น	75	คัง	
โรงงานทั่วไป , ถนนที่มีการจราจรหนาแน่น	80	คัง	
เครื่องเสียงสเตอริโอในห้อง , เครื่องเจาะถนน	90	า รับฟังบ่อย ๆ	
แบบอัคลม		 การใด้ยินจะเสื่อม 	
เครื่องตัดหญ้า	100] อย่างถาวร	

ตาราง (ต่อ)

แหล่งกำเนิด	ระดับความเข้มเสียง (เดชิเบล , dB)	ผลการรับฟัง
ดิสโก้เธค การแสดงดนตรีประเภทร๊อค	120	} ไม่สบายหู
ฟ้าผ่าระยะใกล้	130	្រៃ មេបាចេររំ
เครื่องบินไอพ่นกำลังขึ้นที่ระยะใกล้	150	เจ็บปวดในหู
จรวดขนาดใหญ่กำลังขึ้นที่ระยะใกล้	180	แก้วหูชำรุดทันที

มลภาวะของเสียง

เมื่อเราอยู่ใกล้บริเวณที่กำลังมีการตอกเสาเข็มหรือมีการขุดเจาะถนนด้วยเครื่องเจาะหรือบริเวณ โรงงานอุตสาหกรรมที่มีเครื่องจักรขนาดใหญ่ หรือแม้แต่ในบริเวณสนามบิน เสียงที่เกิดขึ้นในบริเวณ เหล่านี้ จะเป็นเสียงที่มีระดับความเข้มเสียงสูง ถ้าหูรับฟังเสียงเหล่านี้ติดต่อกันนาน ๆ จำทำให้สภาพหู และสภาพจิตใจของผู้ฟังผิดปกติได้ ดังนั้นผู้ที่ทำงานในบริเวณที่มีระดับความเข้มสูง จึงต้องมีจุกอุดหูหรือ ที่ครอบหูหรือวัสดุเก็บเสียงอื่นๆ เพื่อช่วยลดระดับความเข้มเสียงให้หูปลอดภัย

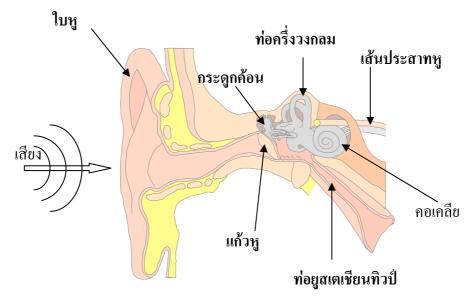
เนื่องจากเสียงที่มีระดับความเข้มเสียงสูง เป็นอันตรายต่อผู้ฟังที่อยู่ใกล้ กระทรวงมหาดไทยจึงได้ ออกประกาศเกี่ยวกับความปลอดภัยในการทำงานในบริเวณที่มีเสียงดังโดยมีเกณฑ์ ดังแสดงในตาราง

ตาราง ประกาศกระทรวงมหาดไทย เรื่องความปลอดภัยเกี่ยวกับเสียง

เวลาในการทำงานต่อวัน	ระดับความเข้มเสียงที่คนทำงานได้รับอย่างต่อเนื่องต้องไม่เกิน			
(ชั่วโมง)	(เดซิเบล)			
น้อยกว่า 7	91			
7 – 8	90			
มากกว่า 8	80			

เสียงที่มีระดับความเข้มเสียงสูง และเสียงที่ทำความรำคาญแก่หูผู้ฟัง คือ **มลภาวะของเสียง**การปรับปรุงหรือแก้ไข แหล่งกำเนิดเสียงให้มีกำลังเสียงลดลง จะทำให้ระดับความเข้มของเสียง
ลดลงด้วย จึงจัดเป็นการลดมลภาวะของเสียงวิธีหนึ่ง ในกรณีที่เราไม่สามารถแก้ไขความดังของเสียงที่
แหล่งกำเนิดเสียงได้ การป้องกันโดยวิธีอื่น ๆ เช่น การใช้จุกอุดหู หรือที่ครอบหู หรือการติดตั้งวัสดุเก็บ
เสียง จะสามารถช่วยลดมลภาวะของเสียงได้

หูกับการได้ยิน


หูเป็นอวัยวะตำคัญในการรับเสียง แบ่งออกเป็น 3 ส่วนคือ

- 1) หูส่วนนอก (external ear) ประกอบด้วยใบหู รูหูหรือช่องหู จนถึงแก้วหู ทำหน้าที่รับเสียง จากภายนอก คลื่นเสียงเดินทางไปทางรูหู โดยมีช่องหูทำหน้าที่รวมเสียงไปสู่แก้วหู
- 2) หูส่วนกลาง (middle ear) อยู่ถัดจากแก้วหูเข้าไป มีลักษณะเป็นโพรงอากาศ ภายในมี กระดูก 3 ชิ้น ได้แก่กระดูกค้อน อยู่ชิดแนบกับแก้วหู กระดูกโกลนมีฐานวางปิดช่องที่ต่อไปยังหูชั้นใน และกระดูกทั่งทำหน้าที่ส่งต่อแรงสั่นสะเทือนของเสียงไปยังหูส่วนใน และหูส่วนกลาง นอกจากนี้ยังทำ หน้าที่ปรับความดันอากาศภายในให้เท่ากับความดันอากาศภายนอก โดยอาศัยท่อที่ติดต่อกับโพรงอากาศ หากความดันไม่เท่ากันจะทำให้หูอื้อ ได้ยินเสียงไม่ชัดเจน

3) หูส่วนใน (inner ear) ประกอบด้วยส่วนสำคัญ 2 ส่วน

ส่วนแรก คือ คอเคลีย (cochlea) เป็นท่องคคล้ายรูปหอยโข่ง ภายในมีของเหลว มี เซลล์รับความสั่นสะเทือนของของเหลวภายในคอเคลีย ทำหน้าที่รับคลื่นเสียง และแปลงเป็นคลื่นไฟฟ้า ไปตามประสาทได้ยินไปยังสมอง เพื่อรับรู้การได้ยินและแปลความหมายโดยสมอง

ส่วนที่สอง คือ ท่อครึ่งวงกลม 3 ท่อ ตั้งฉากซึ่งกันและกัน ทำหน้าที่รับการทรงตัวของ ร่างกายและการเคลื่อนไหวของศรีษะ

เสียงดบตรี

ระดับเสียง

การได้ยินเสียงของคนเรา นอกจากจะได้ยินเสียงดังหรือเสียงค่อย(ความเข้มเสียงและระดับ ความเข้มเสียงแล้ว ยังขึ้นกับความถี่ของเสียงด้วย(เสียงสูงหรือเสียงต่ำ) ความถี่ของเสียงที่หูคนปกติได้ ยินมีค่าตั้งแต่ 20 – 20,000 Hz ดังนั้นเสียงที่มีความถี่ต่ำกว่า 20 เฮิรตซ์ลงไปเรียกว่า คลื่นใต้เสียง (Infra Sonic) สำหรับเสียงที่มีความถี่สูงกว่า 20,000 เฮิรตซ์ ขึ้นไป เรียกว่า คลื่นเหนือเสียง(Ultra Sonic) สำหรับสัตว์อื่น ๆ จะได้ยินเสียงในช่วงความถี่หนึ่งเช่นกัน โดยสัตว์แต่ละชนิดจะได้ยินเสียงช่วงความถี่ แตกต่างกันไป และเสียงที่มีระดับเสียงต่ำ จะเป็นเสียงที่มีความถี่น้อย เรียกว่า เสียงทุ้ม ส่วนเสียงที่มีระดับเสียงตุง จะเป็นเสียงที่มีความถี่นาก เรียกว่า เสียงแหลม การจัดระดับเสียง อาจทำได้หลายวิธี วิธี หนึ่งก็คือ แบ่งเป็นระดับเสียงดนตรี ซึ่งแสดงระดับเสียงตามตาราง

ตาราง การแบ่งระดับเสียงคนตรีในวิทยาศาสตร์

ระดับเสียง คนตรี	C (โด)	D (!5)	E (រឹ)	F(W1)	G(ซอล)	A(a1)	B (ที่)	C' (โด)
ความถื่ (เฮิรตซ์)	256	288	320	341	384	427	480	512

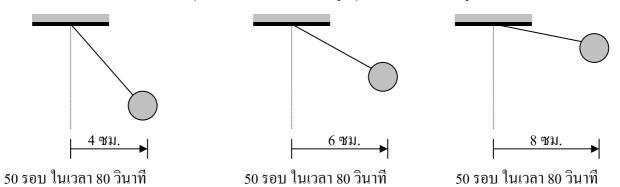
เสียง C มีความถี่ 256 เฮิรตซ์ เสียง C' มีความถี่ 512 เฮิรตซ์ เราเรียก เสียง C กับ C' เป็นเสียงคู่ แปด โดยจะต้องเป็นเสียงมีความถี่เป็น 2 เท่า

ดังนั้น \mathbf{C}' กับ \mathbf{C}'' ก็เป็นเสียงคู่แปด เมื่อ เสียง \mathbf{C}' มีความถี่ 512 เฮิรตซ์ ดังนั้นเสียง \mathbf{C}'' จะต้องเป็น เสียงมีความถี่เท่ากับ 1024 เฮิรตซ์

ในการเล่นดนตรี มีการแบ่งระดับเสียงของเครื่องคนตรีสากล ตามความถี่ ดังตารางต่อไปนี้ ตาราง การแบ่งระดับเสียงคนตรีในทางคนตรีสากล

ระดับเสียง คนตรี	C (โด)	D (!5)	E (มี)	F(W1)	G(ซอ ล)	A(a1)	B (ที่)	C' (โด)
ความถี่ (เฮิรตซ์)	261.6	293.7	329.6	349.2	392.0	440.0	493.9	523.3

เมื่อพิจารณาเสียงคนตรีพื้นเมืองของแต่ละชาติ พบว่ามีการแบ่งระดับเสียงแตกต่างกัน จึงทำให้ เสียงคนตรีแต่ละชาติมีเอกลักษณ์เฉพาะตัว การแบ่งระดับเสียงคนตรีของไทยในยุคใหม่ใกล้เคียงกับการ แบ่งระดับเสียดนตรีสากล ทำให้เครื่องคนตรีไทยสามารถเล่นเพลงสากลบางเพลงได้ และเครื่องคนตรี สากลก็สามารถเล่นเพลงไทยบางเพลงได้เช่นกัน จึงมีการนำเครื่องคนตรีสากลมาบรรเลงร่วมกับคนตรี ไทย เช่น เครื่องผสมออร์แกน หรือเครื่องสายผสมเปียโน


คุณภาพเสียง

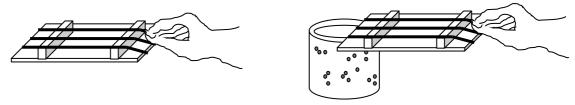
แหล่งกำเนิดเสียงต่างกัน อาจให้เสียงที่มีระดับเสียงเคียวกัน เช่น ไวโอลีนและขลุ่ยเล่นโน้ต เดียวกันจะให้เสียงที่มีความถี่เดียวกัน แต่เราสามารถแยกออกได้ว่า เสียงใดเป็นเสียงไวโอลีนและเสียงใด เป็นเสียงขลุ่ย แสดงว่านอกจากระดับเสียงแล้ว จะต้องมีปัจจัยอื่นอีกที่ทำให้เสียงที่ได้ยินแตกต่างกัน จน เราสามารถแยกประเภทของแหล่งกำเนิดเสียงนั้น ๆ ได้ ทั้งนี้เป็นผลจากการซ้อนทับกันของคลื่นเสียง จากแหล่งกำเนิดเสียงหลาย ๆ แหล่งที่มีความถี่ f, 2f, 3f, ..., nf โดยแอมพลิจูดหรือความเข้มของเสียง แต่ละความถี่แตกต่างกัน มาซ้อนทับกัน ทำให้คลื่นเสียงมีลักษณะเฉพาะตัวที่แตกต่างกันไป

ดังนั้นต้นกำเนิดเสียงต่าง ๆ ขณะสั่น จะให้เสียงซึ่งมีความถี่มูลฐาน(ความถี่ต่ำสุดของเสียงที่ออก จากแหล่งกำเนิดใด ๆ) และ ฮาร์มอนิก (จำนวนเต็มเท่าของความถี่มูลฐาน) ต่าง ๆ ที่ออกมาพร้อมกัน เสมอ แต่จำนวนฮาร์มอนิกและความเข้มเสียงของแต่ละฮาร์มอนิกจะแตกต่างกัน ทำให้ลักษณะของคลื่น เสียงที่ออกมาแตกต่างกัน สำหรับแหล่งกำเนิดเสียงที่ต่างกัน จะให้เสียงที่มีลักษณะเฉพาะตัว หรือที่ เรียกว่า คุณภาพเสียง ต่างกันนั่นเอง คุณภาพเสียงช่วยให้เราสามารถแยกประเภทของแหล่งกำเนิดเสียงได้

ความถี่ธรรมชาติ

เป็นลักษณะเฉพาะตัวในการสั่นของวัตถุแต่ละชนิด ไม่ว่าจะให้พลังงานเท่าใด เมื่อคิดการสั่นใน หนึ่งหน่วยเวลา แล้วจะเท่ากันทุกครั้ง เช่น การแกว่งของลูกต้มที่จะพิจารณาจากรูปต่อไปนี้

ความถี่ = 0.625 Hz ความถี่ = 0.625 Hz ความถี่ = 0.625 Hz จากรูป ข้างบน ไม่ว่าจะดึงลูกคุ้มให้ห่างจากแนวคิงเท่าใคก็ตาม ความถี่ในการแกว่งของลูกคุ้มจะ เท่าเดิมทุกครั้งไป ซึ่งเป็นความถี่ในการแกว่งของลูกคุ้ม อันเป็นลักษณะเฉพาะตัวตามธรรมชาติของ ลูกคุ้ม จึงเรียกความถี่ในการแกว่งของลูกคุ้มนี้ว่า ความถี่ธรรมชาติของลูกคุ้ม


การสั้นพ้อง (Resonance)

คือปรากฏการณ์ซึ่งเกิดขึ้นเมื่อพลังงานกระทบวัตถุ แล้วทำให้วัตถุสั่นด้วยความถี่ธรรมชาติซึ่ง เท่ากับความถี่ของพลังงานที่ตกกระทบ ทำให้วัตถุนั้นเกิดการสั่นที่ฐานแรงที่สุด (เกิดเป็นคลื่นนิ่ง) ซึ่ง อาจทำให้ กระจกหรือแก้วแตกได้ เมื่อบางคนร้องเพลง

การสั่นพ้องของเสียง

การให้พลังงานจากภายนอกกับวัตถุ ด้วยความถี่ซึ่งเท่ากับความถี่ธรรมชาติของวัตถุ วัตถุจะรับ พลังงานได้ดีที่สุด พลังงานนี้จะสะสมอยู่ในวัตถุนั้น ทำให้เกิดการสั่นของวัตถุรุนแรงขึ้น สภาวะที่เกิดขึ้น นี้ เรียกว่า **การสั่นพ้อง (Resonance)**

ตัวอย่าง การสร้างเครื่องดนตรี เช่น ซอ ไวโอลีน กีตาร์

จากรูปแผ่นไม้ที่ จึงสายเอ็น เมื่อดีดสายเอ็นจะทำให้เกิดเสียงในระดับหนึ่ง เมื่อ สร้างกระป๋อง หรือกล่องไม้ กล่องโลหะ ภายในกลวง วางไว้ด้านล่าง จะทำให้เกิดเสียงดังขึ้นกว่าเดิม ปรากฏการณ์นี้เป็นการทำให้เกิดการสั่นพ้องของเสียง เกิดขึ้นภายในกระป๋อง โมเลกุลของอากาศได้รับ พลังงานจากภายนอก เก็บสะสมไว้ ทำให้เกิดการสั่นที่รุนแรงขึ้น จึงทำให้เกิดเสียงที่ดังมากกว่าเดิม (เกิด กลื่นนิ่ง)

บีตส์และคลื่นนิ่งของเสียง

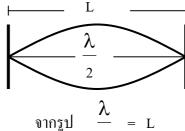
บีตส์ (Beats)

เป็นปรากฏการณ์ที่คลื่นเสียงสองชุดซึ่งมีความถี่ใกล้เคียงกัน แอมพลิจูดเท่ากันหรือไม่ก็ได้ เคลื่อนที่ในตัวกลางเคียวกัน เกิดการแทรกสอดกันขึ้น ได้คลื่นเสียงลัพธ์ซึ่งมีแอมพลิจูดไม่คงที่ แปรเปลี่ยนตลอดเวลา ทำให้เกิดเสียงดัง-ค่อย เป็นจังหวะสลับกันไป จำนวนครั้งของเสียงดัง (หรือ จำนวนครั้งของเสียงค่อย) ใน 1 วินาที เรียกว่าความถี่บีตส์ (f,)

เราสามารถ หาความถี่บีตส์ได้ดังนี้

$$\mathbf{f}_{b} = \left| \mathbf{f}_{1} - \mathbf{f}_{2} \right|$$
 คือ จังหวะดังหรือค่อยที่ได้ยิน

ตัวอย่าง 1 เมื่อเคาะส้อมเสียงสองอันมีความถี่ 450 และ 456 เฮริตซ์ จะทำให้เกิดจังหวะเสียงคัง หรือเสียงค่อยใน 1 วินาที เท่ากับเท่าไร

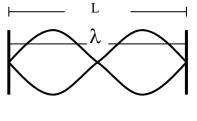

วิธีทำ
$$f_b = |f_1 - f_2| = |450 - 456|$$
 $= |6| = 6$ Hz (มีความถี่บีตส์ 6 เฮริตซ์)

จะได้ยินจังหวะเสียงดัง 6 ครั้ง ใน 1 วินาที หรือ ได้ยินจังหวะเสียงค่อย 6 ครั้ง ใน 1 วินาที

คลื่นนิ่ง และ การสั่นพ้อง (การกำทอน) (Standing Wave and Resonance) คลื่นนิ่ง (Standing Wave)

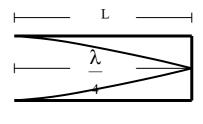
คือ คลื่นรวมที่เกิดจากคลื่นสองขบวน (ซึ่งเป็นคลื่นจากแหล่งกำเนิดอาพันธ์) เคลื่อนที่เข้าหากัน ในตัวกลางเดียวกัน มีผลให้เกิดปฏิบัพและบัพสลับกันไป โดยตำแหน่งของปฏิบัพ และบัพคงที่ ไม่ เปลี่ยนตำแหน่ง ดังรูป

หาความยาวคลื่นได้ดังนี้

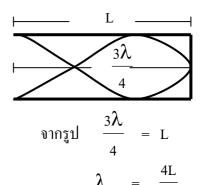


$$\frac{1}{2} = L$$

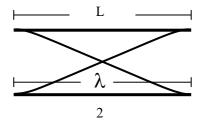
$$\lambda = 2L$$


$$\lambda = 2$$

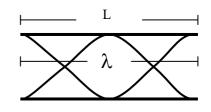
ปลายตึง ทั้ง 2 ข้าง


จากรูป
$$\lambda$$
 = L

หาความยาวคลื่นได้ดังนี้



จากรูป
$$\frac{\lambda}{4} = L$$


ปลายตึง ข้างเดียว

หาความยาวกลื่นได้ดังนี้

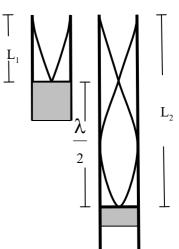
ปลายอิสระทั้งสองข้าง

ตัวอย่าง ถ้าอุณหภูมิของอากาศขณะนั้นเป็น 25 องศาเซลเซียส จงหาความยาวที่น้อยที่สุดของ กล่องเสียงที่ทำให้เกิดความถี่เสียง จากการสั่นของซ้อมเสียงด้วยความถี่ที่ติดตั้งบนกล่องเสียงด้วยความถี่ 230 เฮิรตซ์

วิธีทำ จาก v =
$$331 + 0.6 \, \mathrm{t}$$
 แทนค่า = $331 + (0.6)(25)$ = $345 \, \mathrm{m/s}$ จาก v = $\mathrm{f}\lambda$
$$\lambda = \frac{\mathrm{v}}{\mathrm{f}} = \frac{345}{230} = 1.5 \, \mathrm{m}$$

หาความยาวกล่องเสียง ที่น้อยที่สุด แสดงว่า เกิดการสั่นพ้องครั้งแรกและเป็นท่อปลายปิด

ตอบ ความยาวกล่องเสียง ที่น้อยที่สุด เท่ากับ 37.5 เซนติเมตร


วิธีทำ ตำแหน่งที่เสียงดังที่สุดสองครั้งถัดกันจะห่างกัน $\frac{\lambda}{2}$

$$L_{2} - L_{1} = \frac{\lambda}{2}$$

$$38 - 12 = \frac{\lambda}{2}$$

$$\lambda = 52 \text{ cm}$$

ตอบ ความยาวคลื่นของเสียงเท่ากับ 52 เซนติเมตร

ปรากฏการณ์ดอปเพลอร์ (Doppler Effect)

้คือปรากฏการณ์ที่ผู้สังเกตได้ยินเสียงมีความถี่เปลี่ยนไปจากความถี่เดิม อันอาจเนื่องมาจากการ ้ เคลื่อนที่ของผู้สังเกตทำให้ความเร็วของเสียงมาถึงผู้สังเกตเปลี่ยนแปลงไปจากเดิม และหรือเนื่องจากการ ้ เคลื่อนที่ของแหล่งกำเนิดเสียง ทำให้ความยาวคลื่นที่ผู้สังเกตได้รับผิดไปจากเดิม จึงมีผลให้ผู้สังเกตได้ยิน เสียงแหลม หรือทุ้มมากกว่าความจริง (ความถี่สูงเสียงแหลม , ความถี่ต่ำเสียงทุ้ม)

ความเร็วเสียงในอากาศ กำหนดให้

> ความเร็วของผู้สังเกต \mathbf{v}_{o}

ความเร็วของแหล่งกำเนิด Vc

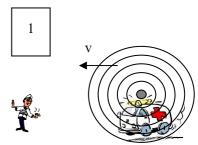
ความถี่ที่ผู้สังเกตได้ยิน f_0

ความถี่เสียงของแหล่งกำเนิด f_s

ความยาวคลื่นเสียงในอากาศ λ

ความเร็วสัมพัทธ์ $\overline{\mathbf{v}}$

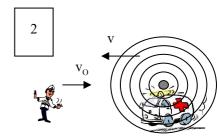
พิจารณาจากรูป เกี่ยวกับ การเกิดปรากฏการณ์ดอปเพลอร์ เมื่อตัวกลางอยู่กับที่ (อากาศ)


จากฐป 1

Source (แหล่งกำเนิดเสียง) อยู่กับที่

ผู้สังเกต (Observe) อยู่กับที่ด้วย

ความถี่ที่ผู้สังเกตได้ยิน = ความถี่ของ Source จะได้ว่า


$$f_0 = f_0$$

จากรูป 2 และ 3

Source (แหล่งกำเนิดเสียง) อยู่กับที่ ผู้สังเกต (Observe) เคลื่อนที่

1. จากรูป 2 ผู้สังเกต (Observe) เคลื่อนที่ เข้าหา จะทำให้ผู้สังเกต ได้ยินเสียงมีความถี่เพิ่มขึ้น

การเคลื่อนที่ในลักษณะนี้ จะมีการเคลื่อนที่สัมพัทธ์ระหว่าง ความเร็วเสียงในอากาศ แหล่งกำเนิด เสียง และ ผู้สังเกต

ดังนั้น ให้ $\overline{\mathbf{v}}$ คือ ความเร็วสัมพัทธ์ระหว่าง ความเร็วเสียงกับแหล่งกำเนิด หรือ ความเร็วสัมพัทธ์ระหว่าง ความเร็วเสียงกับผู้สังเกต

พิจารณาความเร็วเสียงกับความเร็วแหล่งกำเนิด จะได้

ความเร็วสัมพัทธ์ระหว่าง ความเร็วเสียงกับความเร็วแหล่งกำเนิด ดังนี้

คือ
$$\overline{V} = v \pm v_c$$

 $\overline{V} = v + v_s$ แสดงว่า ความเร็วเสียง และ แหล่งกำเนิดเสียง เคลื่อนที่สวนทางกัน ถ้า

 $\overline{\mathbf{v}} = \mathbf{v} \cdot \mathbf{v}_{\mathrm{s}}$ แสดงว่า ความเร็วเสียง และ แหล่งกำเนิดเสียง เคลื่อนที่ไปทาง เคียวกัน

พิจารณาความเร็วเสียงกับความเร็วของผู้สังเกต จะได้

ความเร็วสัมพัทธ์ระหว่าง ความเร็วเสียงกับความเร็วของผู้สังเกต ดังนี้

คือ
$$\overline{V} = v \pm v_0$$

ถ้า $\overline{V}=v+v_{o}$ แสดงว่า ความเร็วเสียง และ ผู้สังเกต เคลื่อนที่สวนทางกัน $\overline{V}=v-v_{o}$ แสดงว่า ความเร็วเสียง และ ผู้สังเกต เคลื่อนที่ไปทางเดียวกัน

จาก
$$v=f\lambda$$
 จะได้ $\overline{V}=f\lambda$

จากรูป 2 พิจารณาที่แหล่งกำเนิดเสียง ได้

เมื่อ $\lambda_{
m s} = \lambda_{
m o}$ เพราะความยาวคลื่น อยู่ระหว่างผู้สังเกตและแหล่งกำเนิดที่เดียวกัน จึงเท่ากัน

$$\frac{\mathbf{v}}{\mathbf{v} + \mathbf{v}_{\mathcal{O}}} = \frac{\mathbf{f}_{\mathcal{S}}}{\mathbf{f}_{\mathcal{O}}}$$

$$f_0 = \left(\frac{v + v_0}{v}\right) f_S$$

2. จากรูป 3 ผู้สังเกต (Observe) เคลื่อนที่ หนี จะทำให้ผู้ สังเกตได้ยินเสียงมีความถี่ต่ำลง

จาก
$$v=f\lambda$$

จากรูป 3 พิจารณาที่แหล่งกำเนิดเสียง ได้

เมื่อ v กับ
$$v_{o}$$
 เคลื่อนที่ไปทางเดียวกัน จะได้ $v \cdot v_{o} = f_{o} \lambda_{o}$ (2)
$$\frac{v}{v - v_{o}} = \frac{f_{S} \lambda_{S}}{f_{o} \lambda_{o}}$$

เมื่อ $\lambda_{
m s} = \lambda_{
m o}$ เพราะความยาวคลื่น อยู่ระหว่างผู้สังเกตและแหล่งกำเนิดที่เดียวกัน จึงเท่ากัน

$$\frac{\mathbf{v}}{\mathbf{v} - \mathbf{v}_{\mathrm{O}}} = \frac{\mathbf{f}_{\mathrm{S}}}{\mathbf{f}_{\mathrm{O}}}$$

$$f_0 = (\frac{v - v_0}{v}) f_s$$

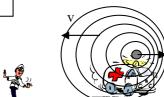
จากรูป 4 และ 5

Source (แหล่งกำเนิดเสียง) เคลื่อนที่ ผู้สังเกต (Observe) อยู่กับที่

จากรูป 4 Source (แหล่งกำเนิดเสียง) เคลื่อนที่ เข้าหา จะทำ
 ให้ผู้สังเกตได้ยินเสียงมีความถี่เพิ่มขึ้น

จาก
$$v=f\lambda$$
 จะได้ $\overline{V}=f\lambda$

$$v \pm v_s = f_s \lambda_s$$


เมื่อ v กับ v_0 เคลื่อนที่ไปทางเคียวกัน จะได้ $v - v_s = f_s \lambda_s$ (1)

เมื่อ $\lambda_{s} = \lambda_{o}$ เพราะความยาวคลื่น อยู่ระหว่างผู้สังเกตและแหล่งกำเนิดที่เดียวกัน จึงเท่ากัน

$$\frac{\mathbf{v} \cdot \mathbf{v}_{S}}{\mathbf{v}} = \frac{\mathbf{f}_{S}}{\mathbf{f}_{O}}$$

$$f_0 = \left(\frac{v}{v - v_S}\right) f_S$$

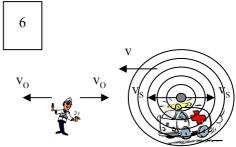
2. จากรูป 5 Source (แหล่งกำเนิดเสียง) เคลื่อนที่ หนี จะ ทำให้ผู้สังเกตได้ยินเสียงมีความถี่ต่ำลง

ຈາກ
$$v=f\lambda$$
ຈະໃຊ້ $\overline{V}=f\lambda$

จากรูป 5 พิจารณาที่แหล่งกำเนิดเสียง ได้

$$v \pm v_s = f_s \lambda_s$$

เมื่อ
$$v$$
 กับ v_o เคลื่อนที่สวนกัน จะใค้ $v+v_s=f_s\lambda_s$ (1)


เมื่อ $\lambda_{s} = \lambda_{o}$ เพราะความยาวคลื่น อยู่ระหว่างผู้สังเกตและแหล่งกำเนิดที่เดียวกัน จึงเท่ากัน

$$\frac{\mathbf{v} + \mathbf{v}_{S}}{\mathbf{v}} = \frac{\mathbf{f}_{S}}{\mathbf{f}_{O}}$$

$$f_0 = (\frac{v}{v + v_S}) f_S$$

้ คังนั้นเราสามารถสรุป สูตร ของปรากฏการณ์คอปเพลอร์ เมื่อ ตัวกลางอยู่นิ่ง (อากาศ)ได้คังนี้ จากรูป 6 สรุปสูตรได้ดังนี้

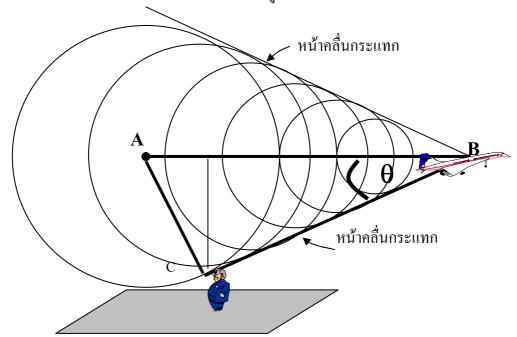
$$f_0 = \left(\frac{v \pm v_O}{v \pm v_S}\right) f_S$$

ผู้สังเกตเกลื่อนที่เข้า แทน ${
m v}_{
m O}$ ค้วย $\,$ (+)

ผู้สังเกตเคลื่อนที่หนี แทน \mathbf{v}_{o} ด้วย (-)

Source (แหล่งกำเนิด) เคลื่อนที่เข้า แทน \mathbf{v}_{o} ด้วย (-)

Source (แหล่งกำเนิด) เคลื่อนที่หนี แทน \mathbf{v}_{o} ด้วย (+)


ตัวอย่าง ชายคนหนึ่งวิ่งเข้าหาแหล่งกำเนิดเสียงด้วยความเร็ว 10 เมตรต่อวินาที ถ้าเสียงนั้นถูกปล่อยออก จากแหล่งกำเนิดเสียงที่หยุดนิ่ง และมีความถี่ 480 Hz ขณะนั้นความเร็วเสียงในอากาศ 300 Hz ชายผู้นั้น จะได้ยินเสียงความถี่เท่าใด

วิธีทำ จาก
$$f_{o} = \left(\frac{v \pm v_{o}}{v \pm v_{s}}\right) f_{s}$$

เมื่อ
$$v=$$
 ความเร็วเสียงในอากาศ = 300 m/s $v_{o}=$ ความเร็วของผู้สังเกต = 10 m/s เคลื่อนที่เข้าหา (+) $v_{s}=$ ความเร็วของแหล่งกำเนิด= 0 m/s $f_{o}=$ ความถี่ที่ผู้สังเกตได้ยิน = ? $f_{s}=$ ความถี่เสียงของแหล่งกำเนิด = 480 Hz จะได้ $f_{o}=\left(\frac{v+v_{o}}{v}\right)f_{s}$ แทนค่า $f_{o}=\left(\frac{300+10}{300}\right)480=496$ เฮิรตซ์

กลื่นกระแทก (Shock Wave)

คือ ปรากฏการณ์ที่ผู้สังเกตที่หยุดนิ่งได้ยินเสียงจากแหล่งกำเนิดเสียง (Source) มีความเร็ว มากกว่าความเร็วของเสียง แสดงลักษณะของคลื่นได้ดังรูป

จากรูป แหล่งกำเนิดเสียง (Source) เคลื่อนจาก $A \to B$ ใช้เวลา t คลื่นเสียง เคลื่อนจาก $A \to C$ ใช้เวลา t อันเคียวกัน

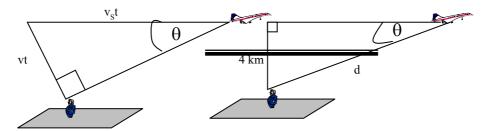
จะได้
$$\sin\theta \ = \ \frac{AC}{AB} \ = \ \frac{AC/t}{AB/t} \ = \ \frac{v}{v_S}$$

$$\sin\theta = \frac{v}{v_S}$$

เมื่อ $\mathbf{v}=$ ความเร็วคลื่นเสียง , $\mathbf{v}_{s}=$ ความเร็วของแหล่งกำเนิด , $\boldsymbol{\theta}=$ ครึ่งหนึ่งของมุมที่ปลาย กรวย

Mach number คือเลขที่ให้ทราบความเร็วของแหล่งกำเนิดเสียงเป็นกี่เท่าของความเร็วคลื่นเสียง หาค่า Mach number ได้จาก อัตราส่วนระหว่าง อัตราเร็วของแหล่งกำเนิดกับอัตราเร็วเสียง

Mach number =
$$\frac{v_S}{v} = \frac{1}{\sin \theta}$$


ตัวอย่าง เครื่องบิน มีความเร็ว 2.5 มัค จะมีอัตราเร็วเท่ากับเท่าไร ถ้าอัตราเร็วเสียงเท่ากับ 340 เมตรต่อวินาที

วิธีทำ Mach number =
$$\frac{v_s}{v}$$

แทนค่า 1.25 = $\frac{v_s}{340}$
 $v_s = (2.5)(340)$

= $v_s = (2.5)(340)$

ตอบ เครื่องบิน มีความเร็ว 1,25 มัก จะมีอัตราเร็วเท่ากับ 850 เมตรต่อวินาที

